
ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025 1



Abstract—This work presents a comparative analysis of
the impact of different obfuscation techniques and tools on
Python code performance. Five main obfuscation
approaches were evaluated: PyArmor, Pyminifier, Cython,
PyInstaller, and PyObfuscate, analyzing their impact on
metrics such as execution time, memory usage, code size,
and startup time. The methodology was based on an
automated benchmarking tool, developed specifically for
this study, capable of applying different obfuscation
techniques to Python code and objectively measuring its
performance. The results demonstrated that it is possible
to effectively protect real-time Python applications with
low performance impact, especially using approaches such
as PyArmor or Cython. The work concludes that the
appropriate selection of obfuscation tools should consider
the specific context of the application, evaluating trade-offs
between protection, performance, and ease of distribution,
especially for critical real-time systems. Therefore, using a
benchmark generation tool can be valuable in deciding the
best strategy to implement in each project.

Index Terms—Benchmark, Code Obfuscation, Python,
Information Security

I. INTRODUCTION

SOFTWARE development market is growing at an
accelerated rate, and and also an increasing concern about how
to protect the intellectual property of the source code of
developed systems. In particular, artificial intelligence systems
that use scripts , whether for inference or training, are
susceptible to having their methods and techniques visible to
anyone who has access to their files. There are some
alternative approaches to protecting against unauthorized
access, such as: obfuscation, watermarking , tamper-proofing,
diversification and minification.

Obfuscation is a set of techniques that can be applied to
make it difficult to read and understand source code. Several
obfuscation strategies have been developed over time as the
demand for more efficient strategies in terms of runtime and
logic protection. A good obfuscation strategy will necessarily
have great power to ensure maximum possible obscurity;

This work was supported in part by Machine Intelligence and
Computer Models Laboratory of Federal University of Rio de Janeiro
(IM2C/Poli/UFRJ) under grant Poli 19.257 of Coppetec.

João Pedro Vital Brasil Wieland is undergraduate on Computation and
Information Engineering student at the Electronics and Computer Department
from Polytechnic School at Federal University of Rio de Janeiro, Brazil
(email: jpvbwieland@poli.ufrj.br).

Flávio Luis de Mello (D.Sc.) is associate professor at the Electronics and
Computer Department from Polytechnic School at Federal University of Rio
de Janeiro, Brazil (email: fmello@poli.ufrj.br).

resilience to be protected from automated tools; stealth to
ensure that the obfuscated code snippet can blend in with the
rest of the program; and low computational cost to avoid
generating a large overhead. As the complexity of the
obfuscation strategy used increases, the natural tendency is for
there to be an impact on the application's runtime. Discussing
the best obfuscation proposals, their advantages and
measuring their impacts are essential issues for the market that
increasingly tries to protect the intelligence of the systems
developed.

Watermarking consists of adding a unique identifier to
ensure that the code's copyright is not violated. For this
technique to be effective, the watermark must be placed in a
way that is not easily detected. This strategy has a trade-off
between resilience, computational cost, stealth, and data size.
The watermark can be static, stored within the executable, or
dynamic, hidden in the source code and only extracted during
runtime. This practice has proven effective in ensuring
intellectual property without high computational costs during
execution.

Tamper-proofing is a strategy that prevents the execution of
code that has had some type of manipulation of its source
code. This strategy needs to be implemented in several parts of
the code to ensure that it is effective. The most common
strategy is to compile the code fragments separately and each
fragment is only executed when it is verified that there has
been no manipulation.

Diversification strategy consists of making each copy of the
code have a different internal structure to make it difficult for
malware to attack the program. This tactic does not guarantee
that a program is free of exploitable flaws, but it does make it
difficult for attacks to be carried out on multiple machines
running the same program since each execution instance is
unique.

Minification consists of removing indentation and line
breaks from code to reduce its size and optimize its
transmission, it is widely used in inference scripts that seek
efficiency. Among the strategies presented, it is the simplest to
break down and there are already several tools for this. This
technique can be applied to reduce the memory space used by
scripts, which is a great advantage in the context in which it is
applied.

The adoption of Java as the main programming language for
developing applications for the Android operating system has
led to even more attention being paid to the area of code
protection, as there are tutorials and tools for reverse
engineering [1] that are easily found and available on the
World Wide Web, and due to the nature of the language. New
languages, such as Dart , already implement obfuscation

Evaluation of Obfuscation Strategies for Python
Source Codes

João Pedro Vital Brasil Wieland, Flávio Luis de Mello

2 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025

strategies automatically when compiled for mobile programs
to ensure that they are less vulnerable. At the mobile
development ecosystem, minification is also used as a way to
optimize data storage on devices.

This paper aims to discuss specifically code obfuscation
techniques, especially scripts of interpreted programming
languages, exams what are the impacts of their
implementation and what are the advantages of their use. To
this end, related works will be presented to show what the
main scholars are developing on this subject. Finally, a
qualitative and quantitative analyses of representative
algorithms of each approach will be carried out.

II. RELATED WORKS

MELLO [1] presents several attacks on artificial intelligence
algorithms during the training and inference stages. He points
out that attacks performed in the inference stages can benefit
from having easy-to-read access to the inference scripts.

Hosseinzadeh et al. [4] analyze the main reasons for the use
of algorithms and logic protection strategies by compiling data
from several published articles. The main reasons given for
the use of the techniques are: ensuring that reverse engineering
of the code becomes more difficult, preventing mass attacks
on vulnerabilities, ensuring that the code is not changed in an
unauthorized way, and hiding confidential data such as
cryptographic keys.

Balakrishnan and Schulze [2] enumerate the different
obfuscation strategies that have traditionally been used for
intellectual property protection. Furthermore, they highlighted
that several strategies were originally developed to protect and
avoid detection of computer viruses, since obfuscation
algorithms can modify the structure of the code to be executed
on the infected machine.

Collberg and Thomborson [3] points out that obfuscation
strategies can be considered "security by obscurity", which the
community considers ineffective because they only hide
information from the attacker. However, he acknowledges that
they can be used to make it harder for the attacker to reverse
engineer the code, i.e., it is an effective technique to increase
the complexity of the work of breaking the code and therefore,
dissuade the attacker. The author also details two strategies to
make the analysis of obfuscated code even harder: the
implementation of Antidisassembly strategies so that
disassembled programs cannot reliably print the execution,
and Antidebugging strategies that attack the debugger program
by writing to its memory area.

Skolka et al. [5] analyzed the strategies used in Javascript
and measured the impact on performance. Minified codes, for
example, had an improvement in performance compared to the
original code, while obfuscated code had an increase of up to
37% in execution time. However, the analysis pointed out that
the implementation of minification and obfuscation generate
correctness problems in the code because the adopted strategy
manipulates functions in such a way that they stop working. It
is therefore necessary to verify the impacts on code execution
to ensure that the methodology used does not harm the quality

of the software.
Uchida et al [6] developed a framework to effectively place

watermarks in scripts without major impacts on efficiency. It
was demonstrated to be effective in protecting against data
compression attacks and parameter modifications of
computational intelligence models. This article demonstrates
the efficiency of providing a document authorship signature,
but does not add code obfuscation security.

Dong et al [7] performed an analysis of the protection
strategies implemented in Android applications and proposed
strategies to detect the technique used. Anti-tampering
solutions have become essential in mobile applications due to
the ease of reverse engineering compiled packages. The main
methodologies in the mobile environment, identifier renaming,
string encryption and Java reflection, are not widely adopted
since there is no standard adopted by the industry.

Obfuscation techniques have been developed almost in
parallel as a way to break the obfuscations that have been
created over time. Udupa et al. [8] details reverse engineering
techniques that can be used to recover code that has been
protected. The paper also classifies obfuscation techniques
into two types: surface obfuscation , which consists of only
changing the syntax and semantics of the code to make it
harder to read, and deep obfuscation, which actually
manipulates the program's execution structure.

Kholia [9] demonstrates through his article how obfuscation
done correctly is essential for the logical protection of systems
and preventing the discovery of attack vectors. By analyzing
Dropbox code and applying techniques to deobfuscate the
code, it was possible to reverse engineer how the Dropbox
client module code worked. This technique is interesting
because it points to an efficient approach to trying to recover
obfuscated code.

III. BENCHMARKING OBFUSCATION STRATEGIES IN PYTHON

A. Motivation and Objectives

Python is an interpreted language widely used for AI
development, and therefore presents particular challenges for
protection. The inherent transparency of its bytecode and its
dynamic nature make reverse engineering relatively easy,
increasing the demand for code protection tools.

While the code protection techniques discussed above have
the potential to protect intellectual property, their
implementation may be limited by their impact on code
execution. This issue is particularly relevant for systems where
performance requirements are critical. To objectively quantify
this impact and provide practical guidelines for developers,
this paper performed a systematic study to compare different
obfuscation tools for Python.

B. Obfuscation Tools for Python

Several tools are available for obfuscating Python code, each
implementing different techniques and offering varying levels
of protection. For this study, five tools were selected, covering
different approaches and complexities:

1) PyArmor [10] : Commercial solution that implements

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025 3

advanced protection through bytecode encryption and
runtime verification mechanisms. It uses a C runtime to
decode and execute protected code, adding anti-debugging
and anti-tampering mechanisms.
2) Pyminifier [11] : Open source tool focused on
lightweight lexical obfuscation techniques, including
identifier renaming, comment removal, and code
compression. Focuses on simplicity and minimal
performance impact.
3) Cython [12] : Although designed for performance
optimization, compilation to native C code offers
substantial protection against reverse engineering as a side
effect, transforming Python code into platform-specific
native libraries.
4) PyInstaller [13] : Packaging tool that generates
executable, incorporating the Python interpreter and all
dependencies. Provides basic protection as a side effect of
the packaging process.
5) PyObfuscate [14] : More archaic implementation of
obfuscation for Python, focusing on basic syntactic
transformations like variable renaming and comment
removal.

These tools represent a spectrum of obfuscation strategies,
from superficial modifications to deep bytecode
transformations, allowing for a comprehensive analysis of the
trade-offs between protection and performance.

C.Benchmark Methodology

To ensure objective and reproducible assessments, an
automated analysis tool was developed with a modular
architecture composed of four main components:

• Tool Manager : Configures and runs different
obfuscation solutions, automatically detecting availability
and compatibility in the test environment.
• Test Orchestrator : Coordinates the complete workflow,
including dependency detection, application of obfuscation
techniques, and execution in an isolated environment.
• Metrics Collectors : Specialized components for accurate
measurement of execution time, memory consumption,
code size, and startup time.
• Results Analyzer : Processes collected data, calculates
statistics and generates comparative visualizations.

The tool is designed for fully automated operation,
minimizing experimental variability and ensuring consistency
in measurements. A critical aspect of the implementation is
the automatic detection of dependencies between Python files,
allowing for proper obfuscation of complex systems with
multiple interconnected components. The tool is described by
Wieland [15] and was developed in a modular way for
possible implementation of new analysis methodologies and
analysis of any Python code.

To evaluate the impact of obfuscation techniques in different
usage contexts, two sets of tests were defined:

 1. Fundamental Operations Tests :
◦ compute_intensive.py : Simulates computationally

intensive workloads (matrix multiplication)
◦ string_manipulation.py : Focuses on string

operations (concatenation, substitution, encoding)
◦ io_operations.py : Evaluates input/output

operations with JSON serialization and file processing
◦ mixed_operations.py : Combines the previous

patterns into a more complex scenario, implementing a
DataProcessor class that performs statistical
processing, string manipulation, and I/O operations.

 2. Real-world Application Study Case : Computer vision-
based driver drowsiness detection system, representing a
practical AI application with real-time requirements. This
system uses OpenCV and dlib for image processing and facial
detection, implementing proprietary algorithms for facial
feature analysis.

This diverse test suite allows evaluating the behavior of
obfuscation tools both in isolated workloads and in complex
systems with external dependencies and real-time
requirements.

Four key metrics were collected to quantify the impact of
obfuscation:

• Execution time (seconds) : Direct measure of impact on
overall performance
• Memory Usage (MB) : Peak consumption during full
execution
• Code Size (KB) : Relevant for distribution and
deployment
• Startup time (ms) : Particularly important for interactive
applications

The experimental protocol followed a rigorous procedure
with 1,000 iterations for each tool and test case combination,
ensuring statistical significance of the results. All
measurements were performed in a Linux environment with
Python 3.11.5, on dedicated hardware to minimize external
interference. The experiment took place on a MacBook Pro
with ARM64 architecture and M1 Pro processor, with macOS
24.3. The processor contains 8 physical cores and 8 logical
cores at 3,2 GHz, 16 GB RAM. The obfuscation tools versions
are: Pyminifier 2.3.3, Cython 3.0.12, PyInstaller 6.12.0,
PyArmor 9.1.2 and PyObfuscate 0.0.2.

IV. RESULTS AND DISCUSSION

A. Fundamental Operations Tests

The results for fundamental operations revealed distinct
patterns for each tool, as described at Table 1 .

TABLE I
OBFUSCATION TOOL METRICS OVER DIFFERENT COMPUTING PROFILE

Execution Time (s)

Configuration
Profile

Compute
Intense

String
Manipulation

I/O Mixed

Original 0.077 0.047 0.106 0.348
PyArmor 0.100 0.050 0.107 0.373
Pyminifier 0.077 0.047 0.106 0.352
PyObfuscate 0.077 0.047 0.107 0.353
Cython 0.048 0.047 0.102 0.348
PyInstaller 2.000 2.259 2.052 2.309

4 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025

Memory Usage (MB)

Configuration
Profile

Compute
Intense

String
Manipulation

I/O Mixed

Original 10.66 11.85 17.82 16.78
PyArmor 14.92 15.94 26.33 21.96
Pyminifier 10.67 11.87 17.55 16.66
PyObfuscate 11.27 12.28 18.10 17.63
Cython 10.62 11.93 17.01 18.50
PyInstaller 1.35 1.38 1.36 1.35

Code Size (KB)

Configuration
Profile

Compute
Intense

String
Manipulation

I/O Mixed

Original 1.47 1.46 3.00 4.63
PyArmor 15.33 12.62 22.27 35.94
Pyminifier 1.16 1.02 2.18 3.29
PyObfuscate 41.27 25.87 36.43 69.26
Cython 0.21 0.21 0.20 0.21
PyInstaller 6,712.84 6712,09 6751.17 6752.69

Time to Startup (s)

Configuration
Profile

Compute
Intense

String
Manipulation

I/O Mixed

Original 1.88 1.94 1.93 1.92
PyArmor 1.93 1.92 1.93 1.94
Pyminifier 1.87 1.95 1.93 1.94
PyObfuscate 1.85 1.95 1.93 1.91
Cython 1.94 1.94 1.91 1.93
PyInstaller 2.11 2.50 2.07 2.08

PyArmor showed a moderate runtime penalty (+18.4%),
with the impact being most pronounced for computationally
intensive operations (+30.1%) and least for string
manipulation (+6.2%). The significant increase in code size
(+940.3%) reflects the addition of protection and runtime
code.

Pyminifier showed the lowest overall performance impact,
with virtually negligible penalty on runtime (+1.2%) and
memory (+1.8%), while significantly reducing code size (-
52.7%). This tool proved to be ideal for performance-critical
cases, offering basic protection without compromising
efficiency.

Cython was the only tool to improve performance, with an
average reduction of 24.7% in execution time, particularly for
computationally intensive operations (-38.2%). This result
confirms the dual benefit of the approach: protection via
compilation to native code and performance gain. The drastic
reduction in code size (-86.2%) is another significant
advantage.

PyInstaller demonstrated the largest negative impact across
all metrics, with dramatic increases in execution time
(+564.3%), memory usage (+25.6%), and especially code size
(+46,352.1%). These results indicate that, while valuable for
simplified deployment, it should be used with caution when

performance is a priority.

B. Drowsiness Detection System

The results for the drowsiness detection system revealed
particularly interesting patterns, with notable differences from
the baseline tests (see Table 2 and Table 3).

TABLE II
OVERALL METRICS FOR EACH OBFUSCATION TOOL FOR AN AI APPLICATION

Tool
Execution
Time (s)

Memory
Usage (MB)

Code Size
(KB)

Startup
Time (ms)

Original 23.56 ±0.23 281.80 ±3.42 10.00
±0.00

1.78 ±0.47

PyArmor 23.69 ±0.10 281.58 ±2.97 24.93
±0.00

1.76 ±0.43

Pyminifier 23.67 ±0.06 282.01 ±3.15 4.73 ±0.00 1.76 ±0.34
Cython 23.67 ±0.13 281.42 ±3.28 0.20 ±0.00 1.89 ±0.52

PyInstaller 48.44 ±2.35 3.25 ±0.58* 136,673.77
±0.00

4.51 ±1.02

±: Standard deviation between different runs. *: Anomalous value due to
limitations in the measurement methodology.

PyArmor demonstrated a surprisingly small impact on
runtime (+0.6%), significantly lower than that observed in the
baseline tests (+18.4%). This discrepancy suggests that for
systems that rely heavily on native libraries like OpenCV and
dlib, the overhead of obfuscation is proportionally lower, as
most of the processing occurs in unobfuscated native code.

Pyminifier and Cython showed similar behavior to
PyArmor, with a negligible impact on execution time (+0.5%).
For Cython, it is particularly interesting to note the lack of
performance gain observed in computationally intensive
operations, suggesting that the bottleneck is in the native
libraries and not in the Python code itself.

PyInstaller continued to show the largest negative impact
(+105.6% in runtime), although significantly smaller than in
the baseline tests. The massive increase in code size (over
13,000 times larger) reflects the inclusion of the full Python
interpreter and all dependencies, including OpenCV and dlib.

PyObfuscate (not included in the table) completely failed to
process the complex system, compromising its functionality.
This incompatibility highlights the risks of using unmaintained
tools in modern applications with multiple dependencies.

TABLE III
THE DIRECT COMPARISON BETWEEN THE FUNDAMENTAL TESTS AND THE REAL

SYSTEM IS PARTICULARLY REVEALING: VALUES REPRESENT PERCENTAGE

INCREASE IN EXECUTION TIME COMPARED TO THE ORIGINAL CODE

Tool
Computational
Operations (%)

String
Manipulation (%)

Detection
System (%)

PyArmor +30.1 +6.2 +0.6
Pyminifier +0.9 +1.3 +0.5
Cython -38.2 -0.3 +0.5

PyInstaller +2,498.7 +457.2 +105.6

C. Practical Implications

The results present significant practical implications for
developers and companies. For systems that rely heavily on
native libraries like OpenCV and dlib, the obfuscation
overhead is generally lower than expected, especially for

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025 5

PyArmor and Cython. This suggests that intellectual property
protection in computer vision and AI applications can be
implemented with minimal performance impact.

Choosing between different tools should consider not only
performance impact, but also factors such as ease of
distribution, compatibility with external libraries, and financial
cost. For example, while PyArmor offers excellent protection
with controlled impact, its cost (between $990 and $9,990 for
commercial licenses) can be prohibitive for smaller projects.

For critical applications where code legitimacy is essential,
as suggested by Hosseinzadeh et al. [4], techniques such as
those implemented by PyArmor are particularly valuable
because they incorporate anti-tampering mechanisms that can
detect unauthorized modifications.

PyInstaller's significant impact on startup time (+1,254.6%
in the fundamental tests) may be intolerable for interactive
applications, although it may be acceptable for systems that
operate in batch mode without real-time requirements.

V. CONCLUSIONS

THIS work presented a systematic and empirical analysis of
the impact of different obfuscation strategies on the
performance of Python codes, with a specific focus on
computer vision applications. The results indicate that it is
possible to effectively protect real-time Python applications
with controlled performance impact, especially using tools
such as PyArmor and Cython.

The significant disparity between the impact observed in the
fundamental tests and in the complex drowsiness detection
system highlights the importance of evaluating obfuscation
techniques in the specific context of the target application.
This observation confirms the concerns raised by Skolka et al.
[5] about the need to verify the impacts on code execution for
each application context.

The developed benchmark tool represents a significant
practical contribution, allowing developers to objectively
evaluate different obfuscation strategies on their own code
before implementing a definitive solution. This personalized
evaluation capability is particularly valuable considering the
diversity of available approaches and the lack of widely
adopted industry standards, as pointed out by Dong et al. [7] .

The results suggest that the appropriate selection of
obfuscation tools should consider the specific application
context, evaluating trade-offs between protection,
performance, ease of distribution, and cost. For critical real-
time systems, such as the drowsiness detector studied,
PyArmor and Cython emerged as the most efficient solutions,
with the choice between them depending mainly on economic
considerations and the value of the intellectual property to be
protected.

As future work, we suggest expanding the analysis to
include direct evaluation of the effectiveness of protection
against reverse engineering attempts, complementing
performance metrics. Additionally, the study of hybrid
approaches, combining different tools for specific system
components, represents a promising direction to optimize the

trade-off between protection and performance.

REFERENCES

[1] MELLO, Flávio Luis de. A Survey on Machine Learning Adversarial
Attacks. Enigma : Journal of Information Security and cryptography, Brasília,
v. 7, n. , p. 1-7, Dec. 2020. doi: doi.org/10.17648/jisc.v7i1.76
[2] BALAKRISHNAN, Arini; SCHULZE, Chloe. Code Obfuscation
Literature Survey. 2005. Available at:
https://pages.cs.wisc.edu/~arinib/writeup.pdf. Accessed on: December 19,
2005.
[3] COLLBERG, Christian S.; THOMBORSON, Clark. Watermarking,
Tamper-Proofing, and Obfuscation - Tools for Software Protection: tools for
software protection. IEEE Transactions on Software Engineering , [s. l], v.
28, no. 8, p. 735-746, Aug. 2002. doi: 10.1109/TSE.2002.1027797
 [4] HOSSEINZADEH, Shohreh et al . Diversification and obfuscation
techniques for software security: A systematic literature review. Elsevier:
Information and software Technology. Turku, Finland, p. 72-93. jul. 2017.
doi: 10.1016/j.infsof.2018.07.007
[5] SKOLKA, Philippe. Anything to Hide? Studying Minified and Obfuscated
Code in the Web. In: WWW '19: THE WORLD WIDE WEB
CONFERENCE, 1., 2019, San Francisco. Proceedings of International World
Wide Web Conference 2019. New York: Acm, 2019. p. 1735-1746. doi:
10.1145/3308558.3313752.
[6] UCHIDA, Yusuke et al . Embedding Watermarks into Deep Neural
Networks. In: International Conference on Multimedia Retrieval, 1., 2017,
Bucharest. New York: ACM, 2017. p. 269-277. doi:
10.1145/3078971.3078974.
 [7] DONG, S. et al. (2018). Understanding Android Obfuscation Techniques:
A Large-Scale Investigation in the Wild. In: Beyah, R., Chang, B., Li, Y.,
Zhu, S. (eds) Security and Privacy in Communication Networks.
SecureComm 2018. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol 254. Springer,
Cham. doi: 10.1007/978-3-030-01701-9_10 . Accessed on: October 15, 2022.
 [8] SK UDUPA, SK Debray and M. Madou, "Deobfuscation: reverse
engineering obfuscated code," 12th Working Conference on Reverse
Engineering (WCRE'05) , 2005, pp. 10 pp.-54, doi: 10.1109/WCRE.2005.13.
[9] KHOLIA, Dhiru. Looking Inside the (Drop) Box. In: Workshop on
Offensive Technologies, 7., 2013, Washington, Dc. Proceedings of 7th
USENIX Workshop on Offensive Technologies. New York: Usenix, 2013. p.
1-7. Available at: https://www.usenix.org/conference/woot13/workshop-
program/presentation/kholia. Accessed on: October 16, 2022.
[10] ZHAO, Jondy. PyArmor's Documentation . 2020. Available at:
https://pyarmor.readthedocs.io/en/latest/. Accessed on: October 20, 2022.
[11] MCDOUGALL, Dan. Pyminifier - Minify, obfuscate, and compress
Python code . 2014. Available at: https://liftoff.github.io/pyminifier/.
Accessed on: November 12, 2022.
[12] Behnel, Stefan; Bradshaw, Robert ; Seljebotn, Dag Sverre; Ewing, Greg;
Stein, William; Gellner, Gabriel. Welcome to Cython’s Documentation. 2025.
Available at: https://cython.readthedocs.io/en/latest/. Accessed on: May 21,
2025.
[13] Cortesi, David; Bajo, Giovanni; Caban, William. PyInstaller Manual.
2025. Available at: https://pyinstaller.org/en/stable/ . Accessed on: May 21,
2025.
[14] ______. PyObfuscate. 2023. Available at: https://pyobfuscate.com/ .
Accessed on, May 21, 2025
[15] Wieland, João Pedro Vital Brasil. Benchmarks of Obfuscation Strategies
from Python Codes. Undergraduate on Computer and Information
Engineering, Politechnique School, Federal University of Rio de Janeiro,
2024.

6 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 12, NO. 1, 2025

João Pedro Wieland received the B.Eng.
degree in Computer and Information
Engineering from the Federal University
of Rio de Janeiro (UFRJ), Rio de Janeiro,
Brazil, in 2025. He is currently pursuing
the M.Sc. degree in Systems and
Computer Engineering at the Graduate
Program in Systems and Computer
Engineering (PESC), COPPE/UFRJ, Rio

de Janeiro, Brazil.
He has experience in software development and applied

research in machine learning, with a focus on large language
models (LLMs) for assistive technologies and software
automation. He has participated in academic-industry
collaboration projects involving IoT and AI in agriculture and
public education systems. His current research interests
include program analysis, automated accessibility, and
generative AI in engineering applications.

João Pedro Wieland is a recipient of the Young Scientist
Award (Prêmio Jovem Cientista) granted by the Brazilian
National Council for Scientific and Technological
Development (CNPq) in 2012.

Flávio Luis de Mello received his DSc.
in Theory of Computation and Image
Processing from the Federal University of
Rio de Janeiro - UFRJ (2006), MSc. in
Computer Graphics from the Federal
University of Rio de Janeiro - UFRJ
(2003), Undergraduate degree in Systems
Engineering from the Military Institute of
Engineering - IME (1998).

He developed command and control systems and
implemented military messages interchange applications
during twelve years as a Brazilian Army officer. He was
responsible for developing software applications based on
machine learning and knowledge reasoning from Mentor
Group.

Dr Mello currently is Full Professor at the Electronic and
Computer Engineering Department (DEL) of Polytechnic
School (Poli) at the Federal University of Rio de Janeiro
(UFRJ). He is head of the Machine Intelligence and
Computing Models Laboratory (IM2C).

	I. INTRODUCTION
	II. RELATED WORKS
	III. BENCHMARKING OBFUSCATION STRATEGIES IN PYTHON
	A. Motivation and Objectives
	B. Obfuscation Tools for Python
	C. Benchmark Methodology

	IV. Results and Discussion
	A. Fundamental Operations Tests
	B. Drowsiness Detection System
	C. Practical Implications

	V. Conclusions
	References

