Flow Feature-Based Network Traffic Classification Using Machine Learning
Abstract
The results for the supervised classifiers were considered comparable to similar studies, while the performance of the clustering model was found to be not satisfactory.
Keywords
Full Text:
PDFReferences
T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy and M. Faloutsos, “Is p2p dying or just hiding?”, in GLOBECOM, vol. 3, pp. 1532-1538, 2004, DOI: 10.1109/GLOCOM.2004.1378239
A. W. Moore and K. Papagiannaki, “Toward the accurate identification of network applications”, in PAM, vol 5, pp 41-45, 2005, DOI: 10.1007/978-3-540-31966-5_4
H. Dreger, A. Feldmann, M. Man, V. Paxson and R. Sommer, “Dynamic application-layer protocol analysis for network intrusion detection”, in USENIX Security Symposium, pp 257-272
R. Boutaba et al., “A Comprehensive Survey on Machine Learning for Networking: Evolution, Applications and Research Opportunities”, Journal of Internet Services and Applications, may, 2018, DOI: https://doi.org/10.1186/s13174-018-0087-2
L. Bernaille and R. Teixeira, “Implementation issues of early application identification”, Lecture Notes in Computer Science, 4866:156, 2007, DOI: 10.1007/978-3-540-76809-8_14
J. Erman, A. Mahanti, M. Arlitt and C. Williamson, “Identifying and discriminating between web and peer-to-peer traffic in the network core”, in Proceedings of the 16th international conference on World
Wide Web, ACM, pp; 883–892, DOI: https://doi.org/10.1145/1242572.1242692
A. W. Moore, D. Zuev and M. Crogan, “Discriminators for use in flow-based classification”, Queen Mary University of London, aug., 2005
M. Roughan et al., “Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification”, in Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 135–148, 2004, DOI: https://doi.org/10.1145/1028788.1028805
J. Park, H. Tyan and C. Kuo, “Internet traffic classification for scalable qos provision”, in IEEE International Conference on Multimedia and Expo, pp. 1221–1224, 2006, DOI: 10.1109/ICME.2006.262757
J. Erman, A. Mahanti and M. Arlitt, “Traffic Classification Using Clustering Algorithms”, in SIGCOMM Workshops, sept., 2006, DOI: https://doi.org/10.1145/1162678.1162679
A. W. Moore et al., “Architecture of a Network Monitor”, Passive & Active Measurement Workshop, 2003
A. W. Moore and D. Zuev, “Internet traffic classification using bayesian analysis techniques”, in Proc. ACM Sigmetrics, Alberta, Canada, pp. 50–59, Jun. 2005, DOI: https://doi.org/10.1145/1064212.1064220
WAND Group, “WITS: Auckland IV”, Available: https://wand.net.nz/wits/auck/4/auckland_iv.php, Accessed on: Feb. 13, 2022.
T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINK: Multilevel Traffic Classification in the Dark”, in SIGCOMM’05, Philadelphia, USA, Aug. 21-26, 2005, DOI: https://doi.org/10.1145/1080091.1080119
C. P. Cheeseman et al., “AutoClass: a Bayesian classification system”, in Proceedings of the Fifth International Conference on Machine Learning, pp. 54–64, 1988, DOI: https://doi.org/10.1016/B978-0-934613-64
-4.50011-6
E. Frank, M. A. Hall, I. H. Witten, “The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques”, 4 ed.: Morgan Kaufmann, 2016
S. Zander and C. Schmoll, “NetMate - User and Developer Manual”, unpublished, 2004.
D. Arndt, “GitHub: DanielArndt/netmate-flowcalc”, Available: https://github.com/DanielArndt/netmate
-flowcalc, Accessed on: Feb. 12, 2022.
DOI: https://doi.org/10.17648/jisc.v8i1.79
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This site is licensed with the Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional